On quadratic integral equations of Volterra type in Frechet spaces
نویسندگان
چکیده
منابع مشابه
On Quadratic Integral Equations of Urysohn Type in Fréchet Spaces
0 u(t, s, x(s)) ds, t ∈ J := [0,+∞), where f : J → R, u : J × [0, T ] × R → R are given functions and A : C(J,R) → C(J,R) is an appropriate operator. Here C(J,R) denotes the space of continuous functions x : J → R. Integral equations arise naturally from many applications in describing numerous real world problems, see, for instance, books by Agarwal et al. [1], Agarwal and O’Regan [2], Cordune...
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملOn Non-absolute Functional Volterra Integral Equations and Impulsive Differential Equations in Ordered Banach Spaces
In this article we derive existence and comparison results for discontinuous non-absolute functional integral equations of Volterra type in an ordered Banach space which has a regular order cone. The obtained results are then applied to first-order impulsive differential equations.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولDiscretization of Volterra Integral Equations
We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaya Journal of Matematik
سال: 2018
ISSN: 2319-3786,2321-5666
DOI: 10.26637/mjm0604/0007